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F(a) funct ions  (where a is the rate of conversion),  frequently referred to when considering non- 
isothermal  heterogeneous  processes ,  are reconsidered from a fractal viewpoint.  This is achieved on 

the  basis of  previous studies on the fundamental  properties of  powders, which show that any pow- 
der obtained by mechanica l  size reduction yields a fractal particle-size distribution P(X,t), where X 
is a scaled part icle size,  with a mater ia l -dependent  power n as P(X, t)~X n, and that the obtained 
powder  has  a specif ic surface area, S, expressed with the fractal particle size x as So~x I)-3 with the 

fractal  d imens ion  D. This can be interpreted to show that a powder obtained by mechanica l  grind- 
ing has a unique D for a specified particle-size range, and, in fact, TA results dependent  on this D 

were obtained. 
We also show that a mechanica l  size reduction process produces fractal  surfaces.  The 

phenomenolog ica l ly  known laws which relate input energy and the powder product are theoretical-  
ly derived by assuming  that the energy is consumed in producing fractal surfaces.  The well-known 
react ion func t ions  which relate the conversion rate with the physical  and geometrical  factors 
governing a reaction process are reconsidered from a fractal viewpoint.  The validity of  convent ion-  
al F(a) express ions  based on integer d imensions  are questioned. 
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Introductiou 

In a non-isothermal heterogeneous process such as decomposition of a solid, 
the rate of the process da/dt, where a is the rate of conversion and t the time, is 
presumed to obey a relation expressed by 

da/dt = k. F(a) 

where k is the well-known Arrhenius equation k = A exp (- E/RT) widely accepted 
in homogeneous reaction kinetics, A is a constant, and E is the so-called activa- 
tion energy. In this equation, F(a) is a unique function of a and is dependent on 
the physical and geometrical relations at the boundary between the product and 
initial material. 
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In previous papers related to dolomite decomposition, it has been found that 
the decomposition is greatly influenced by powder characteristics, particularly by 
particle-size distribution. It has also been found that a consistent result can be ob- 
tained in TA by taking a sample having a fixed particle-size distribution below a 
specified size; i.e. the undersieve distribution function of a powder obtained after 
thorough grinding obeys a power law function P(X,t)o,X", where X is the particle 
size x scaled with a characteristic size constant xo(t), and t is the duration of grind- 
ing [1-3]. This power law function is valid in the particle-size range from ca. 
2 Pm to x, for all kinds of powder prepared by grinding, and the power n can be 
obtained as a material constant [2]. On the other hand, the fact that the particle 
size distribution of a pulverized product obeys a power law function signifies that 
the surface and the shape of the particles obtained by grinding are statistically 
self-similar. Thus, the particle size defined by the sieve aperture can be con- 
sidered a fractal particle size. Then, the specific surface area S can be expressed 
with the fractal particle size x as S ~x D-3 [3, 4], where D is the fractal surface 
dimension. This is essentially the same result as that verified experimentally by 
the Avnir group [5]. 

Results on dolomite decomposition can then be interpreted to show that the 
decomposition of a pulverized sample varies considerably with D [4]. Further- 
more, it has been observed that this reaction does not increase its rate with in- 
creasing specific surface area [6]. This suggests that the reaction mechanism 
described by the reaction rate is a function of x D and that F(a) needs to be recon- 
sidered from a fractal viewpoint. 

Framework of the theory 

Formation of fractal surfaces by taking energy, E, consumed for size reduction 
into consideration 

Various schemes of shape analysis have been proposed, both experimentally 
and theoretically, to satisfactorily characterize the surface of rugged particles. It 
is now well established that products obtained by grinding a solid and powders 
synthesized or found in nature have, in general, heterogeneous surface structures 
which can be defined with non-integer dimensions [7]. Non-fractal surface is 
sometimes said to be an exception. 

The specific surface area S of a ground particle can be given [8] in the form 

S,~x D-3 (1) 

where D represents a fractal dimension. It has been found experimentally that a 
characteristic size Xo which gives the fractal specific surface area So appears with 
progressive grinding. It is naturally assumed that the energy E consumed for 
breakage is used to generate a new fractal surface and is shown by 
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aso,(So - s )0e  

Using Eq. (1), we can obtain the following relation 

dEo~x I~-4 dx 

(2) 

(3) 

Equation (3) is what the Lewis' law states. From Eq. (3) we can obtain the other 
three experimentally known equations as follows by putting particular values for 
D: 
with D = 2, the Rittinger's law 

where xz:represents the particle size of the feed; and x2, the particle size of the 
size-reduced product, with D = 2.5, the Bond's Law: 

with D = 3 ,  the Kick's Law: 

log~Xl 1 

where C is a constant. Thus, it can be seen that the conventionally accepted em- 
pirical laws for the energy of comminution are each a part of the generalized frac- 
tal energy law expressed by Eq. (3), with a specific value for D. It is also known, 
that Bond's law among the energy laws above describes fairly well the ex- 
perimental results. This also supports the assumption of forming a fractal surface 
on powder particles produced by grinding. 

Based on our previous reports and the newly interpreted energy laws for com- 
minution, the functions which describe the mechanisms in solid reactions are 
reconsidered below. 

General description of  heterogeneous reaction 

We describe a heterogeneous reaction in terms of a degree of conversion, a, as 

a = V/Vo (4) 

where the volume V of the reacted portion is selected as the changing property 
which can be monitored during the reaction, and Vo is the initial volume of the 
system. Thus, the same relation noted in the Introduction can be obtained, viz: 

da/dto, F(a) (5) 
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Then, the conventionally accepted equations F(a) as shown in Table 1 [9] are 
reconsidered. 

Surface-control led reactions 

Table 1 React ion  func t ion  fo rms  (Sharp et al. [91) 

Sy m b o l  Funct ion  form F(a) 

DI a -1 

D2 [ - In  (1 - a )1-1 [10] 

D3 (1 - a )1/3 [(I - a )-1/3 _ 11-1 [111 

I)4 [(1 - a )-~13 _ 1]-1 [12] 

R2 (1 - a )1/2 113] 

R3 (1 - a )2/3 [131 

A2 (l--a)  I - In (1-a)11/~ [14] 

A3 ( l --a)  [ - In (1-a) ]2 /3  [141 

We assume that the reaction rate is proportional to the surface area A of the 
reacting boundary: 

dV/d t  = k.A (6) 

where k is a constant, and with Eq. (6), 

da/dt  = k /Vo .  A (7) 

If the morphology of  the reacting particle does not change markedly during the 
reaction, the initial volume Vo and the unreacted or remaining volume V' can be 
written as 

V o = C .  

V ' = C . r  'D 

where r '  is the fractal size of the unreacted particle. Then, by adopting 
Mandelbrot 's theory of co-dimension, the area A of the reaction boundary can be 
expressed by A = C'-r D-l. By simple substitution and V = Vo - V', from Eq. (4), we 
can rewrite Eq. (7) as 

da/dt~ (1 - a)(tr-1)/D 

with D = fractal dimension of 2 < D < 3. 
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D i f f u s i o n - c o n t r o l l e d  r e a c t i o n  

In this reaction, the rate of diffusion of a substance within a thin boundary 
layer between the unreacted material and the reacted product corresponds to the 
reaction rate. Here, the reacting volume is assumed to be proportional to the dif- 
fused amount, expressed by: 

d V / d t  = K .  d N / d t  (8) 

where N is the quantity of the diffusing material, and K is a constant. By assuming 
a simple one-dimensional diffusion, we obtain d2N/dr 2= 0 according to Fick's 
second law: ; and by further assuming the concentration gradient along the direc- 
tion of the diffusion to be constant, we obtain d N / d r  = constant. 

d V / d t  = K . d N / d t  = - D '  �9 K . A �9 d N / d r  (9) 

where D' is diffusion constant, and A represents the cross-sectional area of the 
reaction system. 

At an arbitrary position r in the product layer of a particle of dimension D, the 
diffusion flux per unit time becomes constant irrespective of r. Thus, by integra- 
tion, Eq. (9) becomes 

dN/dt i [_ r_ 0~_ 1)]dro~i d N (10) 
ro No 

where 1 < D < 3. 
T h u s  from Eq. (10) and AN = N - No > 0 we obtain: 
when 1 < D < 2 

d N / d t ~ A N  [ - r  (2-D) + r(2-D)] -1 (11) 

when D = 2 

d N / d t o ~ A N  [ - l n ( r / r o ) ]  -I  (12) 

when 2<D < 3 

d N / d t ~ A N  [r (2-D) - r(o2-D)] -1 (13) 

B y  subs t i tu t ing  r / r o  = (1 - a) ~ 

DD (1 _< D < 2) d a / d t ~ [ -  (1 - a) (2-D)/D + 1] -1 

DD (2<D <3) d a / d t o , [ ( 1 - a ) ( 2 - D ) / O - 1 ]  -1 

DD (D = 2) d a / d t ~ [  - In (1 - a)] -1 
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Nucleat ion-dependent  process 

With respect to a process controlled by the nucleation-growth mechanism, the 
basic concept follows that established by Avrami [14], which describes a process 
involving intergrowth of the nuclei during their rapid growth. Here it is assumed 
that the rate of  formation of the germ nuclei and that of the growth of the grains 
are both constant. Hence 

dN/dt  = k . No (14) 

v = K .  (k' �9 t) D (15) 

where N represents the number of grains; v the volume of a grain or nucleus; D, 
the fractal dimension of the direction of growth; k and k'  each rate constants of 
the formation of  nuclei and of the growth of grains, respectively. No is the number 
of  sites suitable for nucleus formation, and K is a volume conversion factor. 

The total volume, V, for nuclei having formed in the initial stage can be ob- 
tained by 

dN 1 
V = K- k 'D ~ (t - "0 D -~- dx - (D + 1~ 

0 

By differentiation and substitution, we obtain 

da/dto~aD/(~ 

K.No �9 k. k ' ~  t f~ 
(16) 

(17) 

I f  the nucleation is complete in the initial stage, the total volume V after time 
t becomes 

V = k . N . k ' D . t  D 

thus 

da/dto~a(D- 1)/D (18) 

If  the grains grow sufficiently large as to impinge on one another, the actual 
amount reacted, o~ is related to the theoretical a '  as 

a '  = - In(1 - a) 

Thus we obtain 

da/dt  = (1 - a) da'/dt (19) 

I f  the nucleation proceeds at a constant rate, from Eqs (17) and (19) we obtain 

da/dto~(1 - a) �9 [ -  In (1 - a)] D/tD+I) (20) 
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I f  nucleation completes at the initial stage of reaction, from Eqs (19) and (20) we 
obtain 

da/dt,,~(1 - a) .  [-  In (1 - a)] 0)-])/D (21) 

where 1< D < 3. 
The above reaction functions are summarized in Table 2. 

Discussion 

In da/dt,~(1 - a) cD- I ) /D,  with D being the fractal dimension of 2<_D_<3 simple 
substitutions with D = 2 and D = 3 give F(a)o~ ( l - a )  vz and F(a)o,(1-a) ~, cor- 
respoding to R~ and R3 functions in Table 1, respectively. Similarly, in diffusion- 

- D 4 

2.5 ~ 
D 3 

D2-, 

-2.5 ,.- 

-5~ 

Fig. 1 a vs. lnF(a) plots corresponding to the F(a) values in Table 1, according to the classification 
of Sharp etal. I9] 
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control led  react ions,  the convent ional  forms can be obtained by inserting specif ic 
values  for  D as 1, 2 and 3, as F (a)or /a, F (a)o~ [ -  In ( l - a ) ] -  and 
F(a)~l/[(1-a)-~-l], respect ive ly ,  corresponding to D1 to D3 functions in 
Table  1. S imi la r  results  can be obtained for nuc lea t ion-growth  processes  by in- 
serting D = 2 and D = 3, to obtain A2 and A3 functions,  respect ively ,  as 
F(a)o~(1 - a ) .  [ - In (1 - a)] ~ and F(a)o~(1 - a ) . [ -  In (1 - a)] ~. 

Table 2 Functional forms with non-integer D values 

Symbol Function form F(a) 

DD ( D  = 1 - 2  ; ;e2) [-(1-a)(-D+2)/D+I]-~ 

DD ( D = 2 - 3 ; ;e 2) [(1-a)(-D+2)/D-1]-I 

D2 [-In ( l -a ) ]  -1 

RD (D = 2 - 3 ) ( l - a )  (D'I)/D 

AD (D = 1 - 3) (1-a)[ - ln  ( l - a )  ](DI)/D 

2.5 

Fig. 2 a vs. F(a) plot curves of  surface-controlled reactions, indicated by RD, and for the 

nucleat ion-growth process AD, where D is increased from 1 or 2 to 3 in 0.1 steps. Note that 

the a vs. lnF(a) plots fall within the area defined between the conventional R2 and R3 curves 

and between Al and A3 curves in Fig. 1, where A1 corresponds to the F1 curve in the 
conventional description 
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The generalized reaction functions with non-integer D values listed in Table 2 
above are shown graphically in Figs 2 and 3. In Fig. 1 are given the a-In F(a) 
plots corresponding to the F(a) values in Table 1. 

Figure 2 shows the a - I n  F(a) plot curves for surface-controlled reactions, 
i.e., those indicated with symbol RD, and for nucleation-growth reactions indi- 
cated by AD, where D is increased from 1 or 2 to 3 at 0.1 steps. Thus we can see 
that any sample which undergoes a reaction with its a - In F(a) plot falling within 
the area between the R2 and R3 curves may possibly obey a surface-controlled 
reaction. The same discussion may be applied to those between the A1 and A3 
curves, showing a nucleation-growth reaction. 

2.5 

r -  

-2 .5  

- 5  

D2.1 

1.0 

Fig. 3 a vs. lnF(a) plots for diffusion-controlled reactions indicated by DD with D = 1.0 to 1.9 and 

D = 2.1 to 3.0 in steps of 0.1. The curves with D = 2 coincide with the D2 curve in Fig. 1. 

Note that the curves shift to the upper part of the graph with increasing D values to 1.9, and 
then shift downward from D = 2.1 to 3.0 to cover an area defined between the conventional 
D2 and D4 curves 
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Clearly, a deviation in the a - I n  F(a) plots from the conventionally known 
curves is observed in the DD series. If the fractal viewpoint is again applicable to 
the theoretical base for the diffusion-controlled reactions, it can be seen that there 
may be numerous reactions with their a - In F(a) plots deviating from convention- 
ally proposed ones. 

Though there appears no firm basis at present concerning the applicability of 
the starting Arrhenius equation [15], it seems meaningless to limit the reaction 
functions to only those related to the specific integer dimensions, 1, 2 and 3. 
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Zusammenfassung m Die bei Betrachtungen an nichtisothermen heterogenen Prozessen oft ein- 
gesetzten Funktionen F(a) (wobei der Konversionsgrad ist), wurden unter "fractalen" Aspekten 
neu fiberdacht. Dies erfolgte auf der Grundlage vorangehender Untersuchungen fiber die 
grundlegenden Eigenschaften yon Pulvern, welche zeigen, dab aUe durch mechanische Herab- 
setzung der Gr6Be erhaltenen Pulver eine fractale Korngr6Benverteilung P(X,t)  mit einem 
stoffabh~ingigen Exponenten D gem~iB P(X,t) ~ X n aufweisen und dab die erhaltenen Pulver eine 
spezifische Oberfl~,cbe S besitzen, die mit Hilfe der fractalen Korngr6Be x und der fractalen 
Dimension D als S 0, x D'3 ausgedrfickt werden kann. Dies kann dahingehend interpretiert werden, 
dab ein dutch mechanisches Zerkleinern erhaltenes Pulver ffir ein bestimmtes Korngr~Benintervall 
ein eindeutiges D besitzt und dab man TA-Ergebnisse erh~ilt, die eigentlich yon diesem D 
abh~ingen. 
AuBerdem wird gezeigt, daB eine mechanische Herabsetzung der Gr6Be fractale Obeffl~ichen 
ergibt. Ph~inomenologisch bekannte Gesetze zwischen zugeffihrter Energie und dem Pulverprodukt 
werden theoretisch unter der Annahme abgeleitet, dab die Energie zur Erzeugung fraetaler Ober- 
fl~ichen verbraucht wird. Unter einem "fractalen" Gesichtspunkt werden auch die gutbekannten 
Reaktionsfunktionen zwischen Umsetzungsgrad und den die Reaktion beherrschenden 
physikalischen und geometrischen Faktoren fiberdacht. Die Giiltigkeit der fiblichen Ausdrficke 
F(a) mit ganzzahligen Dimensionen wird bezweifelt. 
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